装配过程智能监测 陈成军 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值98元)【高清非扫描版】(2023年08月)

《装配过程智能监测》陈成军 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值98元)【高清非扫描版】(2023年08月)

装配过程智能监测 陈成军 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值98元)【高清非扫描版】(2023年08月)-期末不挂科(qimobuguake.com)

图书简介:

装配过程监测是保证产品装配质量和装配效率的关键环节。本书应用机器视觉和人工智能技术研究一系列面向装配过程监测的技术和方法,并从装配体监测、装配操作监测和螺栓装配力/力矩监测三个方面开展系统介绍。全书共8章,详细阐述人工智能技术基础知识以及基于人工智能的装配过程监测。第1、2章介绍了装配过程监测的基础知识;第3~7章介绍了基于深度学习的装配监测方法,包括像素点特征提取算法、语义分割技术和动作识别技术等;第8章总结全书内容,并进行展望。

目录:

前言
第1章 绪论 1
1.1 装配过程监测的意义 1
1.2 装配过程监测的国内外研究现状1
1.2.1 装配体监测的研究现状 1
1.2.2 装配操作监测的研究现状.8
1.2.3 螺栓装配力 /力矩监测的研究现状 12
1.3 本书主要内容 16
第2章 人工智能技术基础 19
2.1 随机森林分类器 19
2.1.1 决策树模型 19
2.1.2 随机森林分类器模型20
2.2神经网络技术20
2.2.1 单层感知器 20
2.2.2 全连接神经网络 21
2.2.3 卷积神经网络 24
2.2.4 循环神经网络 27
2.2.5 长短期记忆神经网络 28
2.3 开发平台 30
第3章 深度图像标记样本库构建 32
3.1 合成深度图像标记样本库构建 32
3.2 真实深度图像标记样本库构建 34
3.2.1 Kinect传感器 34
3.2.2 真实深度图像的获取及处理 35
3.2.3 真实深度图像的标记 37
第4章 基于像素点特征提取算法的装配体监测 39
4.1 基于 PX-LBP特征的像素分类 39
4.1.1 PX-LBP特征提取算法 39
4.1.2 随机森林分类器 44
4.1.3 实验及结果分析 45
4.2 基于深度差分特征的像素分类 50
4.2.1 深度差分特征 50
4.2.2 实验及结果分析 54
4.2.3 PX-LBP特征与深度差分特征对比 57
4.3 零件识别及装配监测 60
4.3.1 像素预测图像获取 61
4.3.2 基于深度图像的零件识别 62
4.3.3 基于深度图像的装配监测 64
第5章 基于深度学习的装配体监测 73
5.1 基于多跳跃式全卷积神经网络的装配体深度图像语义分割方法 73
5.1.1 多跳跃式全卷积神经网络.73
5.1.2 实验及结果分析 75
5.2 基于可训练引导滤波器和多尺度特征图的装配体深度图像语义分割方法 81
5.2.1 基于可训练引导滤波器和多尺度特征图的网络结构 81
5.2.2 其他语义分割网络 83
5.2.3 实验相关设置 87
5.2.4 实验及结果分析 88
5.3 基于U-Net的装配体深度图像轻量级语义分割方法 93
5.3.1 U-Net网络结构 93
5.3.2 SKC-UNet+DenseCRF网络结构 94
5.3.3 其他语义分割网络 99
5.3.4 实验相关设置 103
5.3.5 实验及结果分析 104
第6章 基于深度学习的装配操作监测 112
6.1 基于三维卷积神经网络的装配动作监测 112
6.1.1 装配动作监测流程及数据集的建立 112
6.1.2 三维卷积神经网络模型结构 115
6.1.3 基于批量归一化的改进三维卷积神经网络 118
6.1.4 实验及结果分析 120
6.2 基于目标检测的装配工具检测 124
6.2.1 装配工具监测流程 124
6.2.2 目标检测相关模型分析 125
6.2.3 实验及结果分析 128
6.3基于姿态估计的装配动作重复次数检测 133
6.3.1 研究流程 133
6.3.2 姿态估计模型分析 133
6.3.3 实验及结果分析 135
第7章 基于表面肌电图信号的螺栓装配监测 141
7.1 螺栓装配扭矩实验台及数据集建立141
7.1.1 螺栓装配扭矩实验台 141
7.1.2 扭矩分类数据集制作及数据预处理 143
7.1.3 扭矩回归数据集制作及数据预处理 145
7.2基于卷积神经网络的装配扭矩分类粒度估计 148
7.2.1 多粒度分割并行卷积神经网络 148
7.2.2 2D CNN模型 149
7.2.3 实验及结果分析 150
7.3 基于回归神经网络的螺栓装配扭矩监测 159
7.3.1 基于回归神经网络的螺栓装配扭矩监测流程 160
7.3.2 回归神经网络模型 160
7.3.3 实验及结果分析 165
第8章 总结与展望 172
8.1本书总结 172
8.2研究展望 173
参考文献 175

期末不挂科(qimobuguake.com):专注提供大学考试期末不挂科网课视频,课程适用期末/补考/重修的大学生们。猴博士爱讲课不挂科、蜂考高斯课堂不挂科、高数叔不挂科、高数帮不挂科、斐多课堂不挂科,学霸戴你飞不挂科全套网课视频课程。
期末不挂科(qimobuguake.com) » 装配过程智能监测 陈成军 科学出版社 PDF电子教材 PDF电子书 大学教材电子版 电子课本 网盘下载(价值98元)【高清非扫描版】(2023年08月)

常见问题FAQ

本站PDF电子教材/电子书版本标注说明
【高清原版 非扫描版】:非扫描,高清原版品质,文字可编辑 。
【高清非扫描版】:非扫描,高清品质,文字不可编辑。
已经购买的资源,有效期是多久?
账号内已购资源:百度网盘分享,永久有效,不过期。
网盘链接地址失效了怎么办?
本站学习资源因防盗链原因,每次生成链接有效期一般为30天,如遇链接地址过期失效, 请联系网站在线QQ客服并提供失效资源链接地址,工作时间内我们看到后将第一时间回复。
遇到付款失败,付款后没有生效怎么办?
理论上来说正常付款后不会出现此类问题,但是也会有部分用户因为网络等原因导致在付款的过程中会有一些小插曲。如果出现类似问题,大可不必惊慌,本站所有支付都会生成订单,不管成功还是失败,所以如果真正遇到网络问题导致付款失败您又不知道是否成功时,请提供 "付款凭证+个人中心用户名" 截图给在线QQ客服处理。
是否可以提供发票?
本站提供的知识付费课程、电子教材、期刊杂志、艺术名画等内容均为虚拟服务,不提供任何形式的发票。